- Home
- Standard 12
- Mathematics
3 and 4 .Determinants and Matrices
normal
If $A = \left[ {\begin{array}{*{20}{c}}
3&7\\
1&2
\end{array}} \right]$ then $|A^{2011} -5A^{2010}|$ is equal to
A
$1$
B
$-1$
C
$6$
D
$-6$
Solution
$\left|\mathrm{A}^{2011}-5 \mathrm{A}^{2010}\right|=|\mathrm{A}|^{2010}|\mathrm{A}-5 \mathrm{I}|$
$A-5 I=\left(\begin{array}{ll}{3} & {7} \\ {1} & {2}\end{array}\right)-\left(\begin{array}{ll}{5} & {0} \\ {0} & {5}\end{array}\right)=\left(\begin{array}{cc}{-2} & {7} \\ {1} & {-3}\end{array}\right)$
$|A-5 I|=-1$ and $|A|=-1$
So $|\mathrm{A}|^{2010}|\mathrm{A}-5 \mathrm{I}|=(-1)^{2010}(-1)=-1$
Standard 12
Mathematics